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We study flows of inelastic spheres on the surface of an erodible bed between frictional sidewalls
and distinguish two regions in such flows: a dilute, diffuse region, neighboring the free surface, for
which we solve a boundary-value problem based on the kinetic theory, and a dense algebraic layer,
in which there is an approximate algebraic balance between production and dissipation of
fluctuation energy. We take into account correlated motions between the particles at high volume
fractions and employ the trapezoidal rule to solve, in an approximate way, for the flow quantities in
the diffuse layer. Using boundary conditions of no-slip and yield at the bed and vanishing of the
stresses and the energy flux at the free surface, we obtain analytical predictions of flow depth and
mass flow rate that compare favorably with the results of experiments performed on glass spheres
flowing on the surface of a heap and in half-filled rotating drums. © 2011 American Institute of
Physics. �doi:10.1063/1.3532838�

I. INTRODUCTION

In the recent years, surface flows of dry granular mate-
rial over an apparently static bed have received great atten-
tion. Indeed, because the particle volume fraction varies
through the flow field, this relatively simple flow configura-
tion permits the simultaneous observation of several different
regimes. Near the free surface, there is a dilute region, in
which the particle interactions are essentially chaotic, binary,
instantaneous collisions;1,2 in moving from this region into
the interior, there is a transition to a dense collisional regime,
in which correlated motion seems to play a fundamental
role;3–6 and, finally, at the bed, a shear rigidity develops7 and
particles of the bed interact with jostling, enduring contacts
that permit creep with an exponentially decaying velocity
profile.8

So far, two different experimental configurations have
been employed to study surface granular flows. In the first
one, particles are continuously fed to the top of a heap with
constant mass flow rate;9,10 in the other one, a partially filled
drum is rotated at a constant angular velocity around a hori-
zontal axis.11–13 In the former, a steady, fully developed flow
is obtained, while in the latter, the flow is steady, but not
fully developed. Nevertheless, experimental results in the
two devices agree, and this indicates that unlike flow over
rigid beds,14,15 the angle of inclination of the free surface and
the depth of the flow above the bed are completely deter-
mined by the mass flow rate over the heap and the angular
velocity of the rotating drum.

Taberlet et al.9 show that the presence of frictional side-
walls plays a fundamental role in controlling surface granu-
lar flows, permitting flows at angles of inclination of the free
surface much higher than the angle of repose of the granular
material. Jop et al.10 perform experiments on heap flows by
changing, among other parameters, the distance between the
sidewalls; they suggest a scaling that employs this distance
to obtain universal relations between flow depth, average ve-

locity, and angle of inclination of the free surface. They also
derive analytical expressions for these relations using a phe-
nomenological local rheology, valid for dense flows, intro-
duced by the French group GDR MiDi.16 This rheology links
the ratio of shear to normal stress to the so-called inertial
parameter �the ratio of time scales associated with particle
motions perpendicular and parallel to the flow, respectively�.
Félix et al.13 perform experiments in rotating drums by
changing the diameter and the width of the drum and the
particle diameter; they conclude that the results are sensitive
to the ratio between the drum and particle diameters and
independent of the drum width, and that it is not possible to
deduce a local particle rheology from experiments in a rotat-
ing drum.

Recently, Jenkins and Berzi17 extended an existing ki-
netic theory for identical, nearly elastic, frictionless spheres
to identical, very dissipative, frictional spheres, taking into
account the possibility of correlated motion between the par-
ticles. Assuming that an algebraic balance between produc-
tion and dissipation of fluctuation energy holds everywhere
and that the flow regime is dense, they were able to derive
analytical solutions for dense flows between frictional side-
walls that compared well with measurements in the experi-
ments of Jop et al.10 It has been shown18,19 that such an
algebraic balance applies in a core region, roughly five to ten
diameters away from the top and bottom boundaries.

Here, we extend the work of Jenkins and Berzi17 to take
into account the possible presence of a diffuse region close to
the free surface. In this region, the divergence of the flux of
fluctuation energy in the energy balance for the particles is
not negligible; so we solve the differential equations of the
kinetic theory in an approximate way, using the trapezoidal
rule of integration and boundary conditions at the free sur-
face and the top of the dense region. This permits us to
obtain an analytical solution for the diffuse region that we
combine with the analytical solution for the dense, core re-
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gion already obtained in Jenkins and Berzi.17 We indicate the
influence of the model parameters on these, show that the
predictions of the theory are in excellent agreement with the
experiments of Félix et al.,13 and give an explanation for the
apparent dependence of their results on the geometry of the
drum. Finally, we use the trapezoidal rule to provide a physi-
cal explanation for the observed dependence of the limiting
inclination angle for steady flow on the distance between the
sidewalls.

II. THEORY

A sketch of the flow configuration is given in Fig. 1.
Here, and in what follows, all quantities are made dimen-
sionless using the particle diameter, the mass density of the
particle material, and the gravitational acceleration. The flow
is assumed to be steady and fully developed in the
x-direction and inclined of an angle � with respect to the
horizontal; the y coordinate is taken to be perpendicular to
the free surface, with y=0 at the bed and y=h at the free
surface. There is a dilute, diffuse region, for H�y�h, and a
dense core, of extent H in which there is an algebraic balance
between production and dissipation of fluctuation energy. In
what follows, we neglect all terms involving spatial variation
along the spanwise direction. As we will see, this permits an
analytical solution to the flow. Some indication of the valid-
ity of this approximation is given by the velocity profiles at
the free surface reported in Ref. 10, although its final assess-
ment relies essentially on comparison with experiments.

The balances of momentum parallel and perpendicular to
the flow are

ds

dy
= − � sin � + 2�w

p

W
�1�

and

dp

dy
= − � cos � , �2�

where s is the particle shear stress, p is the particle pressure,
and � is the particle volume fraction. In Eq. �1�, we have
incorporated frictional sliding at the walls, with friction co-
efficient �w, in an approximate way by averaging through
the distance W between the sidewalls, as do Taberlet et al.9

and Jop et al.10 We set the value of �w on the basis of
comparisons with experiments, and note that it may be influ-

enced by the slight anisotropy in the normal stresses seen in
numerical simulations.20

The balance of fluctuation energy is

dQ

dy
= s

du

dy
− � , �3�

where Q is the energy flux in the y-direction, u is the particle
velocity in the x-direction, and � is the rate of collisional
dissipation. When the term on the left hand side of Eq. �3� is
negligible, the production of fluctuation energy due to the
working of the stress equals the dissipation due to collisions;
we refer to this as the algebraic balance.

To close the problem, we employ the constitutive rela-
tions derived from the kinetic theory of Garzó and Dufty21

for frictionless, inelastic spheres, neglecting the small terms
introduced by their function c�, as do Jenkins and Berzi.17

The constitutive relations are provided in Table I. There, T is
the granular temperature �one-third the mean square of the
velocity fluctuations�, G is the product of � and the radial
distribution function at contact, en is the coefficient of nor-
mal restitution, and �0 is the coefficient of tangential restitu-
tion in a sticking collision. As in Ref. 17, we take e to be an
effective coefficient of restitution that incorporates the ef-
fects of friction in the limit of infinite friction.22 For �
�0.49, we use the radial distribution function determined by
Carnahan and Starling23 in numerical simulations at moder-
ate volume fractions; for 0.49���0.60, we adopt, instead,
a modified version of the Torquato’s radial distribution
function,24 with a singularity at a volume fraction less than
0.64. As shown by Mitarai and Nakanishi5 and Kumaran,6

the singularity in the radial distribution function for particles
in a steady, homogeneous shearing flow depends on the res-
titution coefficient. We assume here that the singularity is at
a volume fraction of 0.60, as do Jenkins and Berzi.17 This
seems appropriate for e=0.7,5 and is very close to the values

FIG. 1. Sketch of the flow configuration with the frame of reference.

TABLE I. Summary of the constitutive relations.

p=4�GFT

G ����1 − �/2�/�1 − ��3 if � � 0.49

0.63�/�0.60 − �� if 0.49 � � � 0.60
�

F = �1 + e�/2 + 1/�4G�

1 − e2

4
�

1 − en
2

4
+

1 + �0

7
− 	1 + �0

7

2

	�1 +
5�1 + �0�

14 − 5�1 + �0�
�

s = �
du

dy

�= �2J /5
1/2�p / �FT1/2�

J =
�1 + e�

2
+




32

�5 + 2�1 + e��3e − 1�G��5 + 4�1 + e�G�
�24 − 6�1 − e�2 − 5�1 − e2��G2

� =
12


1/2
�G

L
�1 − e2�T3/2

L = max�1,	1

2
c

G1/3

T1/2
du

dy

�
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between 0.58 and 0.59 found by Kumaran.6 However, as we
will see, the value of G is obtained from its relation to the
ratio of shear and normal stress; hence, the particular form of
the radial distribution function adopted influences only the
evaluation of the volume fraction, which we assume, for sim-
plicity, to be zero at the top of the dilute, diffuse region and
constant in the dense region.

Correlated motion between particles that are likely to
occur when the flow is dense is taken into account through a
correlation length L that appears in the constitutive expres-
sion of the rate of collisional dissipation.3,4 In the constitu-
tive expression of L reported in Table I, c is a constant of
order unity. The argument of Jenkins3,4 was that in dense
shearing flows, the particles are forced into overlapping or
chattering contact along the principal compressive axis; this
clustering would explain the overestimation of the rate of
collisional dissipation by the classical kinetic theories ob-
served in numerical simulations on dense shear flow of
disks.18 It accounts, in a phenomenological way, for the over-
estimation of the usual measure, T, of the strength of the
velocity fluctuations observed in numerical simulations of
hard spheres in dense flows,5 shown by Kumaran6 to be re-
lated to the breakdown in the assumption of molecular chaos
and the departure of distribution of the fluctuations in the
relative velocity of colliding particles from the form associ-
ated with this assumption.

III. APPROXIMATE ANALYTICAL SOLUTION

As already mentioned, in order to obtain an approximate
analytical solution for the flow of Fig. 1, we treat the dense,
algebraic region and the dilute, diffuse region separately. For
the latter, we integrate the three balance equations �1�–�3�
and the constitutive relations for the shear stress and the
energy flux of Table I using the trapezoidal rule: a

b�dy
��b−a���a+�b� /2. From this point onward, the subscript
indicates the position y at which the generic variable � is
evaluated. The decomposition of the flow domain into sepa-
rated regions was previously made by Louge25 and
Kumaran26 when treating dense, inclined, granular flows on
rigid beds in the absence of sidewalls. In addition to consid-
ering flows over erodible beds and including lateral confine-
ment, the present work differs from these in the use of the
trapezoidal rule.

The trapezoidal rule approximates profiles as varying
linearly between their end points; consequently, the associ-
ated error is proportional to the curvature in the profile. Its
use permits us to obtain simple analytical solutions to alge-
braic equations, and it does not require that the diffuse layer
be a boundary layer26 or to be dense.25 Also, in contrast to
Louge25 and Kumaran,26 we employ constitutive relations of
a kinetic theory with estimates of the coefficients obtained
from comparison of predictions and the experiments on in-
clined flows over rigid, bumpy boundaries in the absence of
sidewalls.14

A. Dilute, diffuse region

We use the vanishing of the stresses and the energy flux
at the free surface as boundary conditions. From Eqs. �1� and
�2� and the boundary condition ph=0, we obtain

s

p
= tan � − �w

p

�W cos �
. �4�

This relation holds everywhere in the flow and not only in
the dilute, diffuse region.

We now assume that the volume fraction at the free sur-
face is very small and that the algebraic layer is entirely
dense with L=1 at y=H. When we neglect the divergence of
Q and employ the constitutive relation for L in the dense
algebraic layer, the energy balance �3� provides an algebraic
relation between granular temperature and shear rate,

	 u�

T1/2
3

=
15

J

�1 − e2�
cG1/3 . �5�

We use this to express L and s / p as functions of � and e �see
Jenkins and Berzi17 for more details� as

L =
1

2
�15

J
�1 − e2�c2�1/3

G2/9 �6�

and

s

p
=

4J

5
1/2
1

�1 + e��15

J

�1 − e2�
c

�1/3 1

G1/9 . �7�

Employing Eq. �6� in Eq. �7�, with the condition LH=1, we
obtain the value k of the stress ratio s / p at y=H,

k = 	24JH

5


1 − e

1 + e

1/2

, �8�

where, upon taking the dense limit in the expression for J
of Table I, JH= �1+e� /2+ �
 /4��3e−1��1+e�2 / �24− �1−e�
	�11−e��. The value of k is, therefore, solely determined by
the value of the coefficient of restitution.

If we employ the trapezoidal rule in Eq. �1� with ph=0,
�h=0, and taking �H to be 0.6,

pH = 0.3�h − H�cos � . �9�

Then, Eqs. �8� and �9� used in Eq. �4� give us the value of the
depth of the dilute, diffuse region,

h − H = 2
max�k, tan �� − k

�w
W , �10�

in which we have accounted for the fact that a dilute, diffuse
region is present only if tan ��k.

Finally, from the definition of volume flow rate per unit
width, qy =0

yu�dy, we obtain

qh = qH + 0.3uH�h − H� , �11�

where the values of qH and uH are determined as part of the
solution for the dense, algebraic region.

B. Dense, algebraic region

Given that the flow is dense in the algebraic region, the
pressure distribution is given to a good approximation by
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p = pH + 0.6�H − y�cos � . �12�

As do Jenkins and Berzi,17 we assume that the collisional
kinetic theory that we employ ceases to be valid at volume
fractions at which rate-independent contributions to the
stress begin to develop. Here, we assume that a rate-
independent shear rigidity characterizes the bed and take  to
be a characteristic ratio of shear to normal stress there. It is a
parameter of the model that can be interpreted as the angle of
repose of the granular material; it coincides with the limiting,
or stopping, angle for steady flow in a channel of infinite
width. At the end of the section, we indicate how the pres-
ence of the sidewalls causes this stopping angle to increase
and, thus, to differ from the angle of repose.

Using Eqs. �9�, �10�, and �12� in Eq. �4� gives, for y=0,

H =
min�k, tan �� − 

�w
W . �13�

Equation �13� provides the depth of the dense algebraic re-
gion, once the values of the stress ratio at the extremes are
known, with the minimum function taking into account the
possibility that no dilute, diffuse region is present.

From the constitutive relations for the shear stress and
for the pressure of Table I, we obtain

du

dy
= � 25
F

16J2�G
�1/2 s

p
p1/2. �14�

Following Jenkins and Berzi,17 in Eq. �14� we replace the

function G of s / p in Eq. �7� by its value Ḡ at the average
value s / p of s / p, where

s

p
= min�k, tan �� −

�w

2

H − �

W
. �15�

Then, upon employing Eqs. �2� and �4� in Eq. �14� and tak-
ing the dense limit for the coefficients F and J with �=0.6,

du

dp
= − A	tan � − �w

p

0.6W cos �

p1/2, �16�

where A= �25
�1+e��1/2 / �32JH
2 0.63Ḡ cos2 ��1/2. Integrating

Eq. �16�, with the boundary condition u=0, when p= p0, with
Eq. �12� providing p0, gives

u =
2

3
A tan ��p0

3/2 − p3/2� −
2

5

�wA

0.6W cos �
�p0

5/2 − p5/2� .

�17�

Then, with p= pH, we can obtain uH in Eq. �11� from Eq.
�17�.

The integration of Eq. �17� between y=0 and y=H pro-
vides the value of the flow rate qH,

qH =
2Ap0

5/2 tan �

35 cos �
�7

3
�3 − 5

pH

p0
+ 2	 pH

p0

5/2�

−
�wp0

0.6W sin �
�5 − 7

pH

p0
+ 2	 pH

p0

7/2�� . �18�

In summary, we assume we know the properties of the
granular material: the restitution coefficient e, yield stress

ratio , and coefficient c of the correlation length, and the
characteristics of the sidewalls: the gap W and wall coeffi-
cient �w, and first set the value of tan � at a value greater
than the minimum provided by the analysis reported in
Sec. III D. Then, we calculate from Eqs. �8�, �10�, and �13�
the values of k, h-H, and H, respectively; with these, the
depth of the flow layer h can be determined as a unique
function of the inclination of the free surface, a distinctive
feature of granular flows over erodible beds. Then, the pres-
sures pH and p0 are obtained from Eqs. �9� and �12�; with
these, uH and qH from Eqs. �17� and �18�, and, finally, qh

from Eq. �11�. In this way, we obtain the global quantities
tan �, h, and q=qh to be compared with existing experiments
on flows of glass spheres at the surface of a heap and in
rotating drums.10,17

C. Results

We first study the sensitivity of the approximate analyti-
cal solution to the parameters �Fig. 2�. We use, as a reference
set of parameters, e=0.60, =0.40, c=0.50, and �w=0.25,
as previously adopted by Jenkins and Berzi17 for flows of
glass spheres between glass sidewalls. With these, k=0.58.
For tan ��k, only the dense, algebraic region is present, and
its depth increases linearly with tan �. For tan ��k, the
dense, algebraic region has a constant depth and a dilute,
diffuse region develops, with a depth that increases linearly
with tan �. The analytical solution, giving the flow rate as a
function of the inclination angle, depicted in Fig. 2 refers to
surface flows in a channel of width W=57, for which experi-
mental results are available.10 The solution depends on the
friction coefficient of the sidewalls and the value of the stress
ratio at the bed �Figs. 2�c� and 2�d��. As already mentioned,
the latter has a clear physical meaning as the angle of repose
of the granular material in a wide channel. Consequently, it
can easily be inferred from the experiments as the limiting
value of the angle of inclination as q tends to zero. Jop et
al.10 suggested a value of 0.18 for �w, based on tilting board
experiments; however, the slightly higher value adopted
here, and in Ref. 17, permits a better fit to the relation be-
tween flow depth and flow rate measured in the experiments.

Jop et al.10 performed experiments with glass spheres
flowing over a heap, varying the distance W, between the
vertical sidewalls made of glass. Assuming, as we do, that
the sidewalls transmit a frictional force to the flow and that
the GDR MiDi rheology holds,16 they showed that the flow
depth, the velocity, and flow rate per unit width must scale
with W, W3/2, and W5/2, respectively. In the GDR MiDi rhe-
ology, the stress ratio is taken to be a function, to be deter-
mined through comparisons with experiments, of the inertial
parameter—the ratio between time scales associated with
motion parallel and normal to the flow, respectively. It can be
easily shown4,17 that in the context of the phenomenological
extension to the kinetic theory, the GDR MiDi rheology is a
direct consequence of the algebraic balance between produc-
tion and dissipation in the balance of fluctuation energy.
Hence, more generally, we can say that the scaling suggested
by Jop et al.10 holds when the algebraic layer occupies most
of the flow.
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Our assumption of negligible particle volume fraction
at the free surface has important consequences on the
scaling when a dilute, diffuse region is present, that is, when
tan ��k. Then, the flow rate in the dilute, diffuse region �Eq.
�11�� is determined from quantities in the dense, algebraic
region, in which the scaling of Jop et al.10 applies. Given that
the depth of the dilute, diffuse region �Eq. �10�� also scales
with W, we conclude that the scaling of Jop et al.10 should
also hold at the highest values of the angle of inclination
when the dilute, diffuse region is present. To check this, we
make comparisons with the experiments performed by Félix
et al.13 on rotating drums half-filled with glass spheres, using
the reference set of parameters to obtain the approximate
analytical solution. In the experiments, Félix et al.13 used
annuli of diameter D and width W, ranging from 47 to 7400
and 10 to 100, respectively. For a given angular velocity �,
they measured the depth h of the flowing layer as the dis-
tance between the free surface and the lowest static point in
the laboratory frame of reference. The associated flow rate
per unit width is

q = 0.60�
D2

8
. �19�
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FIG. 2. Influence on the approximate analytical solution for flow rate vs the angle of inclination for a channel of W=57 of �a� the coefficient of restitution
�e=0.4, dot-dashed line; e=0.8, dashed line�. �b� The parameter c in the correlation length �c=0.75, dot-dashed line; c=1.00, dashed line�. �c� The friction
coefficients of the walls ��w=0.15, dot-dashed line; �w=0.35, dashed line�. �d� The stress ratio at the bed �=0.35, dot-dashed line; =0.45, dashed line�. In
all the plots, the solid line represents the analytical solution obtained using the reference set of parameters. In �a�, the experimental results �circles� of Jop
et al. �Ref. 10� are also shown.
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FIG. 3. Scaled flow depth against scaled flow rate per unit width: the ex-
periment �circles� of Félix et al. �Ref. 13�, the present theoretical treatment
�solid line�, and the analytical solution �dashed line� of Jop et al. �Ref. 10�.
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In Fig. 3 we show the theoretical and experimental flow
depth h /W against the scaled flow rate per unit width,
q /W5/2. First, the scaling suggested by Jop et al.10 holds, as
anticipated, for h /W� �k−� /�w�0.72, corresponding to
angles of inclination with tan ��k, for which a dilute, dif-
fuse region is present. Second, the present theory is capable
of predicting the experimental results in a striking way, al-
though the definition of flow depth employed here, based on
the value of the stress ratio for which shear rigidity occurs,
differs from that adopted by Félix et al.13 Also shown in Fig.
3 is the theoretical curve derived by Jop et al.10 using the
GDR MiDi rheology for the glass sphere parameters sug-
gested by Forterre and Pouliquen.27 As already mentioned,
an approach based on such a local rheology fails in the pres-
ence of a dilute, diffuse region. Finally, the dependence on
the drum diameter D of the experiments of Félix et al.13 can
be explained; indeed, by increasing D, Félix et al.13 in-
creased q, as shown in Eq. �19�, and, therefore, generated
flows in which the dilute, diffuse region became progres-
sively more important.

D. Stopping angle

We show here how the trapezoidal rule can also be em-
ployed to derive an approximate analytical expression for the
dependence of the stopping angle on the channel width, ex-
perimentally demonstrated by Grasselli and Herrmann28 and
Zhou et al.29

At the limiting inclinations associated with stopping, the
boundary influences the dense region throughout its depth
and there is no dilute, diffuse region. In this situation, we use
the trapezoidal rule and the constitutive relation for the shear
stress in the energy balance �Eq. �3�� to obtain

Qh − Q0 = �sh
2/�h − �h + s0

2/�0 − �0�h/2. �20�

This should apply in the limit of small h when the distribu-
tion of the energy flux in the flow is approximately linear.
Both the first and the second terms between brackets on the
right hand side of Eq. �20� are proportional to �h

1/2ph
3/2,

as it is easy to show by taking the dilute limit in the expres-
sions of Table I: Jh=25
 /32�24−6�1−e�2−5�1−e2��−1�h

−2,
Gh=�h, and Fh= �4�h�−1. At the interface with the bed, we
employ the boundary condition for the energy flux derived
by Jenkins and Askari,30 slightly modified to include the cor-
relation length at the bed,

Q0 = − 2p0
T0

1/2

L0
�3�1 − e�M0



�1/2

, �21�

where, in the dense limit, M0= �1+e� /2+9
�1+e�2�2e−1� /
�8�16−7�1−e���, and p0 is evaluated from Eq. �12�.

Using Eq. �21� in Eq. �20�, and the expressions of
Table I in the dense limit, with the boundary conditions
ph=Qh=0 at the free surface, we obtain

h =
16�3�1 − e�M0�1/2

5
�1 + e�2L0/JH − 24�1 − e�
. �22�

We now assume, as does Jenkins,3 that the flow stops when
the depth h is equal to L0; hence, the stopping height of the
flow, i.e., the limiting value hstop of the depth for the energy
balance �Eq. �20�� to hold, results from Eq. �22�,

hstop =
12�1 − e� + �144�1 − e�2 + 80
�1 + e�2�3�1 − e�M0�1/2/JH�1/2

5
�1 + e�2/JH
, �23�

which is only a function of e and . With this, from Eqs. �10�
and �13�, we obtain the stopping inclination angle for a sur-
face granular flow,

tan �stop =  +
�w

W
hstop. �24�

The stopping angle is, therefore, a decreasing function of
the distance between the sidewalls, as reported by Grasselli

and Herrmann28 and Zhou et al.29 Furthermore, the depen-
dence �Eq. �24�� of the stopping angle on W indicates that the
scaling suggested by Jop et al.10 should break down as tan �

approaches this value. Indeed, their experiments �e.g., their
Fig. 11� confirm this observation.

In Fig. 4, we test the prediction �Eq. �24�� for the stop-
ping angle of the particles as a function of W against the
experiments31 on 3 mm diameter glass spheres totally sub-

FIG. 4. Experimental �circles, from du Pont et al. �Ref. 31�� and theoretical
�solid line� stopping angle vs distance between sidewalls.
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merged in water. The agreement is very good, even though
the value of  that we employ, which, once again,
corresponds to the stopping angle when W is infinite,
is smaller than that measured. However, as suggested by
du Pont et al.,31 this asymptotic value of the stopping angle
depends on the way of constructing the heap and, therefore,
the presence of water can play a role.

IV. CONCLUSION

We have studied steady flows of inelastic spheres at the
surface of an erodible bed between frictional sidewalls. We
have distinguished two regions in the flow: a dilute, diffuse
region close to the free surface, in which we have solved the
complete system of equations provided by the kinetic theory,
and a dense, algebraic region below it, where the algebraic
balance between production and dissipation of fluctuation
energy holds. We have taken into account that correlated
motion between the particles develops at high volume
fraction,3,4,17 and we have employed a simple integration rule
to solve, in an approximate way, for the flow in the diffuse
layer. Using appropriate boundary conditions of no-slip and
yield at the bed and the vanishing of the stresses and the
energy flux at the free surface, we have obtained an analyti-
cal description of the flow that compares favorably with the
experimental results performed on glass spheres flowing at
the surface of a heap10 and in half-filled rotating drums.13 We
have also used the simple integration rule to derive an ex-
pression for the stopping angle of the granular material as a
function of the distance between the sidewalls that agrees
with existing experiments.31

The main result of the present theoretical treatment is �i�
a local rheology for the particles can be employed only when
the flow is entirely dense—that is, when no dilute, diffuse
region is present; however, �ii� the scaling that makes use of
the distance between the sidewalls also holds when a dilute,
diffuse region is present, as in the experiments;31 and �iii� the
scaling breaks down as the flow approaches the stopping
angle of the granular material, in accordance with the
experiments.10
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